
JTR: A binary solution for switch-case recovery

Lucian Cojocar, Taddeus Kroes, and Herbert Bos

Vrije Universiteit Amsterdam
lucian.cojocar@vu.nl, t.kroes@vu.nl, herbertb@cs.vu.nl

Abstract. Most security solutions that rely on binary rewriting assume a clean
separation between code and data. Unfortunately, jump tables violate this as-
sumption. In particular, switch statements in binary code often appear as indirect
jumps with jump tables that interleave with executable code—especially on ARM
architectures. Most existing rewriters and disassemblers handle jump tables in a
crude manner, by means of pattern matching. However, any deviation from the
pattern (e.g., slightly different instructions) leads to a mismatch.
Instead, we propose a complementary approach to “solve” jump tables and au-
tomatically find the right target addresses of the indirect jump by means of a
tailored Value Set Analysis (VSA). Our approach is generic and applies to binary
code without any need for source, debug symbols, or compiler generated patterns.
We benchmark our technique on a large corpus of ARM binaries, including mal-
ware and firmware. For gcc binaries, our results approach those of IDA Pro when
IDA has symbols (which is generally not the case), while for clang binaries we
outperform IDA Pro with debug symbols by orders of magnitude: IDA finds 11 of
828 switch statements implemented as jump tables in SPEC, while we find 763.

1 Introduction

Solving indirect control flow transfers such as jump tables in a disassembler is important
for many applications—from binary rewriting to reverse engineering, and from malware
analysis to code complexity metrics [47, 37, 21]—because it is essential to find some
parts of the Control Flow Graph (CFG) of a program. Unfortunately, it is also very
difficult and modern disassemblers frequently get it wrong in cases where code does not
follow common, easy-to-fingerprint patterns, such as handwritten assembly or malware.

Extracting a reliable CFG requires the ability to distinguish between data and code
and to solve the indirect control transfers—in the sense of finding the possible targets for
such transfers. Any over-approximation adds spurious edges to the CFG, while under-
approximations remove legitimate edges.

Unless they can extract the CFG reliably, many binary analysis techniques either no
longer work at all, or with reduced accuracy. Besides reverse engineering in general, this
includes the analysis of code complexity [47, 37, 21] and binary control flow testing [6,
58]. Moreover, a reliable solution for jump tables also serves to detect the presence of
custom protocol parsers [21].

A version of this manuscript was published at ESSoS’17. DOI: https://doi.org/10.1007/
978-3-319-62105-0_12

https://doi.org/10.1007/978-3-319-62105-0_12
https://doi.org/10.1007/978-3-319-62105-0_12

If incorrect CFGs are a nuisance for software testers and reverse engineers, they
can be downright catastrophic for binary rewriting solutions. Many software hardening
approaches rely on binary rewriting [42] to offer security guarantees. Examples include
control flow integrity (CFI) [26, 50, 6, 58, 52, 22], sandboxing [38, 18, 36, 55, 27, 25,
45, 57], static taint tracking [9, 19, 54, 28, 41]. An incomplete or incorrect CFG can
void the security guarantees or even break legitimate software. Most binary rewriting
solutions [12, 8, 49, 42, 51] are conservative when the CFG is incomplete, trading
security guarantees for the overhead of the binary solution.

State-of-the-art disassemblers use pattern matching to solve complicated indirect
control flow transfers. For instance, if a specific compiler generates a jump table to
implement a switch statement in C, IDA Pro should know the precise template that the
compiler will use a priori, so that it can search for exactly this pattern in the binary. Get-
ting it right is important, as IDA uses the resulting jump targets to continue disassembly.
Changing the code, however slightly, to not fit the template, results in a misclassification
of the code. In practice, we found such cases in both benign and malicious software.

In this paper, we present a generic technique to solve indirect control transfers with-
out pattern matching, to handle complicated cases—malware and handwritten code—
for which templates are not available. We do not necessarily aim to outperform solu-
tions based on pattern matching for “easy” cases (although we show that our solution is
very competitive even for those). By means of a compiler-independent context-sensitive
Value Set Analysis (VSA) tailored specifically to complicated indirect control transfers,
we instead aim to help disassemblers handle complex and malicious code.

We compare our work against IDA Pro, a state-of-the-art pattern matching disas-
sembler, and show that our analysis results are good and very robust. For instance, since
IDA does not have good patterns for clang, our results are orders of magnitude bet-
ter for clang and comparable for gcc even though we never embedded any compiler
knowledge. In summary, our contributions are the following:

– We systematize how modern compilers implement switch statements by means of
jump tables.

– We show that jump table detection by pattern matching is limited.
– We describe a context sensitive VSA suitable for recovering indirect jumps from bi-

nary code that outperforms powerful tools like IDA Pro and is compiler-independent.
– We evaluate our approach and show that it recovers complicated jump tables in

binary code without access to source code or debug symbols.

2 The Problem with Patterns

Modern disassemblers commonly classify all sorts of code fragments by way of pat-
tern matching—scanning the binary code for templates of known language constructs.
For example, solutions like Jakstab and IDA Pro use well-known patterns for a va-
riety of compilers to identify function entry points, function parameters, C++ virtual
calls, switch statements, and many other constructs [34, 32, 30, 1]. Unfortunately, the
effectiveness of pattern matching depends on the completeness and soundness of the
templating for the code under analysis. For instance, Bao et al. [13] demonstrated the

2

ineffectiveness of pattern matching for detecting function entry points. In general, pat-
tern matching does not work well if the code deviates from the templates—a common
phenomenon in hand-written assembly or malware.

In this section, we systematize how modern compilers implement switch statements
by means of jump tables. We then show the limitations of pattern matching for identi-
fying these jump tables.

2.1 Jump tables in practice

Instead of a straightforward if-then-else implementation, modern compilers frequently
opt for jump tables to implement switch statements [44]. In practice, compilers generate
three different types of jump table instances in terms of the control flow. These types
are orthogonal to Cifuentes and Van Emmerik’s expressions [20] and cover all jump ta-
bles that implement switch statements in compiler-generated code that we encountered,
across hundreds of applications, a wide range of compilers, and various architectures.

1 // compare r3 with 10
2 cmp r3, #10
3 // if less or same, load pc
4 // with pc + value in jump
5 // table, using r3<<2 as index
6 ldrls pc, [pc, r3, lsl #2]
7 b default
8 .word 0x20
9 .word 0x40

10 .word 0x80
11 .word 0x40
12 ...

Listing 1.1: jumpSIMPL: gcc implementation of
switching. An alternative implementation replaces
line 1 with subs r4, r3, #10 which changes the
pattern so that IDA cannot detect it.

1 add r1, r1, #1
2 and r3, r1, #0xff
3 cmp r3, #0xB // 12 cases
4 mov r1, #6
5 strb r3, [r4,#4]
6 addls pc, pc, r3, lsl #2
7 b loc_7d0c //default case
8 b loc_7d0c //default case
9 b loc_7c9c //case 1

10 b loc_7ccc //case 2-9
11 ...
12 ---

Listing 1.2: jump2JUMP case. Line 7 computes
he value of the target. Unlike jumpSIMPL,
it uses unconditional relative jumps instead of
jump tables (lines 7-11).

jumpSIMPL is the most common form of jump table. It uses a register as an index in
the table and computes the value of that register using the switch input value. It then
loads the value of an offset from the jump table, adjusts it and adds it to the program
counter. An example of this idiom is shown in Listing 1.1.

jump2JUMP represents an implementation that is slightly less common, but still widely
used. It first adds an offset based on the switched value to the current Program Counter
(PC). The new PC will target another jump (forward) instruction. The offsets are not
stored in code, but in the branch forward instructions. Even though it uses no jump ta-
ble in the strict sense of the word, we still consider this case for our experiments, since
the computation of PC represents a significant and similar hurdle for static disassem-
blers. Listing 1.2 shows an example of the jump2JUMP idiom.

jump2STUB , a less common implementation, makes the code to jump to a stub that
takes as parameters the switched value and the jump table. The jump table is stored af-

23% of switch statements are lowered to jump tables by gcc. When compiling SPEC CPU
2006 with clang (for ARM), 21% of the switch statements are lowered to jump tables.

3

1 ldrb r3, [r4, #7] // r3 is the index
2 adds r0, #0x49
3 bl rt_switch_stub // switch 7 cases
4

5 .byte 6 // item count
6 .byte 0x4, 0x8, 0xd, 0x12, 0x17, 0x20
7 .byte 0x1d // default offset
8

9 rt_switch_stub: // jt width = 8 bits
10 ldrb r12, [lr, #-1] // load the item count
11 cmp r3, r12 // compare the index
12 ldrccb r3, [lr, r3] // load case offset
13 ldrcsb r3, [lr, r12] // load default offset
14 add r12, lr, r3, lsl#1 // add the offset
15 bx r12 // jump to target

Listing 1.3: jump2STUB case. The stub uses the link register (lr) to access the jump table. The
jump table contains the number of cases as the first entry. The default case is the last item in the
jump table.

ter the unconditional jump instruction. Listing 1.3 shows an example. While less com-
mon, we did encounter this switch statement implementation on multiple occasions in
ARM Thumb code, in position independent code, and in firmware. The advantage of
jump2STUB is its space efficiency—the rt_switch_stub is present only once in
the binary regardless of the number of switch statements.

JTR is generic enough to recover all three cases even though we do not embed any
logic that models these three types. As we shall see, we do use them for evaluation.

2.2 Pattern matching limitations

Disassemblers try very hard to detect switch statements (so they know which bytes to
disassemble), by matching the bytes in binary code to well-known patterns that com-
pilers are known to generate. Any deviation from the known patterns confuses the de-
tection. Unfortunately, it is hard to find patterns that allow jump table detection to be
both sound and complete. As a result, disassemblers can easily get it wrong. Consider
Listing 1.1, which shows one of the idioms generated by gcc to implement switch
statements. A mere replacement of the cmp compare instruction with any semantically
similar instruction such as sub breaks the pattern recognition even though the program
semantics remain unchanged. State-of-the-art disassemblers such as IDA miss the mod-
ified jump table entirely and interpret all the data in lines 6–10 as instructions instead.

As shown in Table 1, it is quite easy to fool modern disassemblers and decompilers
by deviating from such well-known patterns, but the question is whether such cases
also occur in real-world code. Unfortunately, they do. For instance, the last column of
Table 1 contains code that is generated by clang. Moreover, Listing 1.4 displays a real-
world (hand optimized) implementation of the memcpy function in glibc. Note that
link-time optimisation (LTO) may easily inline such highly optimized code in several
places in a program. As explained in the figure, state of the art disassemblers cannot
compute the target address at line 5 and line 10, because they expect the calculation of
jump targets immediately before the jump itself.

4

// gcc
// default
cmp r3, #11
ldrls pc,

[pc,r3,lsl #2]
b __default

// cmp->subs
subs r0, r3, #11
ldrls pc,

[pc,r3,lsl #2]
b __default

cmp r3, #11
// pc alias
addls r3, r3, #1
ldrls r0,
[pc,r3,lsl #2]

movls pc, r0
b __default

cmp r3, #11
// redundant
// cond. jump
bhi __default
ldrls pc,
[pc,r3,lsl #2]

b __default

//clang
//default
add r0, r0, #9
cmp r0, #6
bhi __default
lsl r0, r0, #2
add r1, pc, #0
ldr pc, [r0, r1]

IDA
sw

3 7 7 7 7

IDA
CFG

3 3 7 3 7

JTR 3 3 3 3 3

Table 1: JTR Pattern matching failures. In all cases except the baseline, IDA fails to detect the
switch statement (“IDA sw”). Often, this leads to an incomplete CFG also (“IDA CFG”). JTR
always recovers the correct targets of the switch statement. The last and first column of the table
is code generated by compilers.

Lift to

LLVM

10110010011001011001

01001110110001001011

define i32 @foo(i32 %a) {

 %1 = mul i32 %a, %a

 ret i32 %1

}

inlining +

optimizations

VSA

*p1 --> SMT formula 1

*p2 --> SMT formula 2

*p3 --> SMT formula 3

...

SMT formula

for every ptr
Data dependency

DAG (per ptr)

SOLVE!

1 2 3 4 5

Fig. 1: High-level overview of the approach

As a result, the analysis generates an incomplete CFG which renders subsequent
analysis techniques less effective—hurting, for instance, the strength of security mea-
sures that rely on binary rewriting. Likewise, reverse engineering the code now requires
significant manual annotation and analysis. In the remainder of this paper, we show that
JTR can complement pattern matching approaches and solve these cases.

3 Tailored Value Set Analysis for Solving Indirect Jumps

As shown in Figure 1, our analysis starts by lifting the binary to LLVM intermediate
code using a home-grown translator, much like PIE [21] and LLBT[46], but slightly
more advanced. As we do not consider it a contribution of this paper, will not discuss
it further. Next, in Step 2, we apply a variety of optimizations, in particular aggressive
inlining. As we will discuss later, without it LLVM does not inline some of the more
intricate examples of jump2STUB. We now describe the main analysis steps of JTR—
Steps 3–5 in Figure 1. Analogous to how bounded address tracking [43, 32, 33] targets

https://github.com/cojocar/bin2llvm

5

https://github.com/cojocar/bin2llvm

1 2: subs r2, r2, #96
2 [...]
3 5: ands ip, r2, #28 // set flags
4 rsb ip, ip, #32 // no flag change
5 addne pc, pc, ip // flags are tested
6 b 7f
7 6: nop
8 ldr r3, [r1], #4 // r3=*r1; r1 += 4
9 [...] // load 6 more regs

10 add pc, pc, ip // ip from line 5
11 nop
12 nop
13 str r3, [r0], #4 // [r0]=r3; r0 += 4
14 [...] // store 6 more regs
15 bcs 2b // jump to loop entry

Listing 1.4: Code snippet of the implementation of memcpy in glibc. Note that (a) both
conditional and unconditional instructions compute the targets (lines 5 and 10), (b) the condition
of the add on line 5 is determined by the and instruction on line 3), and (c) the target computed
on line 10 depends on a value computed 11 instructions earlier. Since most disassemblers assume
locality (the calculation of jump targets right before the jump), they fail to recover this case. In
contrast, JTR successfully computes the possible values written to the PC on lines 5 and 10.

VSA [10] at binaries, we compute a list of all possible values a register may contain at
specific points in any program—with an emphasis on indirect control transfers.

To analyse all the indirect control transfers of interest (i.e., jump tables and complex
arithmetic computations on the PC), we need only consider a program’s non-constant
writes to the program counter. In Step 3 in Figure 1, after identifying all such indirect
writes (stores) to PC, JTR goes through every function containing them to determine
all possible paths from the store instruction back to the start of the function. For each
path, we build a set C that represents the specific path constraints in SMT expressions
form. Specifically, we go back along the paths to discover where this value originated
and stop when we encounter a memory read or the start of the function. If the memory
access itself depends on an indirect memory access, we recursively trace that back also,
ensuring that we handle cases where, say, the program computes a pointer p by adding
pointer q and index i.

To do so, JTR computes a data dependency Directed Acyclic Graph (DAG) to cap-
ture the relation between the memory pointers:

1. A node in the graph corresponds to a memory pointer access in its SMT expres-
sion form. Because the SMT formula stops when we encounter a memory read,
the expression kept in non-root nodes always contains a memory read. The SMT
expression captures any complex expression between nodes.

2. An edge in the graph captures the dependency between nodes. Given two nodes p
and q, an edge from p to q means that p depends on the value pointed by q. In other
words, to solve pointer p, we must compute the value pointed by q. In this way, the
expression of p can easily emulate (but is not limited to) an indirect memory load
with a base (node q) and an offset which can be a constant or another node.

3. The root of the dependency graph represents the pointer used in the targeted indirect
write and the root expression will give us the possible values of PC.

6

For the final step, solving the DAG, the naive approach is to invoke the Satisfiability
Modulo Theories (SMT) solver for the expression of the leaves, constrained by C . Us-
ing the obtained values, we can then subsequently load the values pointed to and solve
the rest of the tree. Doing so always gives results that are an overapproximation of the
real jump targets, but with a high false positive rate in case of translation imprecision.

The key observation for improving the naive solution is that the possible values
of a pointer are a limited subset of all possible memory addresses and C and some
expressions of the nodes from the DAG must have a common expression. Let N be the
set of the expressions of all nodes in the DAG. We denote M the set of common non-
constant expressions between C and N . We now construct M ← [m0, ..., mk] as a
sorted set, with m0 the largest expression in the set. We define the size of an expression
as the number of nodes needed to represent the expression as a tree.

We now ask the Z3 [40] SMT solver for concrete values for m0 while obeying the
path constraints (see Algorithm 1). Using the concrete values, we recursively solve the
DAG by temporarily expanding C with constraints that capture the concrete values. In
the second part of Algorithm 1, we start from the leaves of the DAG and we simplify
each node expression using the accumulated constraints. If a node’s expression becomes
constant, we load its corresponding memory pointer, otherwise we continue with the
simplified expression. If the memory pointer is invalid, we abandon mi and we move to
mi+1 and restart the process. If the expression of the root node becomes constant then
we successfully solved the DAG for one value. We continue the process until all the
values of m0 are tested.

Algorithm 1 DAG solving

Require: C , M
1: procedure SOLVE_DAG
2: for m ∈M do . M is an ordered set
3: for value∈ SMTSolve(m, C) do
4: constraint←m≡value
5: C ← C∪constraint
6: rootExpr←RecursiveDAGSolve(DAG.root, C)
7: if isConstant(rootExpr) then
8: appendSolution(rootExpr)
9: C ← C�constraint

1: procedure RECURSIVEDAGSOLVE(Node, C)
2: expressions = {}
3: for child←Node.children do
4: childExpr←RecursiveDAGSolve(child, C)
5: expressions←expressions∪(child, childExpr)
6: for child, childExpr←expressions do
7: if isConstantAndLoadable(childExpr) then
8: value←LoadPointer(childExpr)
9: constraint←childExpr≡value

10: C ← C∪constraint
11: return simplifyExpression(Node.expr, C)

If we explored all paths but found no solution, our analysis fails. In Section 4, we
will see that despite its simplicity this method is quite effective in solving jump tables
(and other indirect jumps).

Recovered code preparation As LLVM optimizations may influence our results, we
evaluated the effect of important optimizations that we applied to the lifted LLVM code.
As a baseline, we used the same level of optimization as in PIE [21] which already
provides common optimizations such as memory to register promotion, global value
numbering, and dead code elimination. Next, we added a custom pass to replace the

7

intricate control flow of the select instruction with a simpler if-then-else sequence.
Finally, we turned on aggressive inlining.

In practice, presumably because the select instructions does not affect the control
flow of the code of interest, we could not observe any change in the solving capabilities
of JTR. Becuase JTR analysis is intra-procedural, aggressive inlining, improved our
results overall as subtler jump2STUB were inlined and, in consequence, analyzed. We
therefore turn on aggressive inlining in Step (2) of Figure 1 and in all experiments in
Section 4.

4 Evaluation

We evaluate our solution on 109 coreutils programs compiled for ARM, 4 firmwares,
17 malware samples, a synthetic set of 210 binaries, and the SPEC CPU 2006 test suite.
We believe that this is a meaningful set to evaluate JTR, as it is large-scale, contains
binaries generated with different (known and unkwon) compilers, while SPEC is com-
monly used by the security community for benchmarking. We summarize the results in
Table 2 and discuss them in detail below.

Coreutils binaries It is a clear that if accurate patterns are available, we cannot beat
pattern matching, but we show that we are competitive still with the most important
state-of-the-art dissambler. As mentioned, we intend JTR to complement rather than
compete with traditional jump target detectors—to resolve the complicated cases that
pattern matching cannot handle. Nevertheless, it is interesting to evaluate our solution
by itself. To show the limitations of pattern matching and the genericity of JTR, we use
two different compilers, namely Clang (version 3.5) and GCC (version 4.9.2). We use
the debug symbols in combination with IDA to generate a “ground truth”.

In the absence of debug information, IDA recovers 77% of all the switch statements.
The missing 23% are either due to failed function detection, or misinterpretation of
jump tables as instructions (as is the case for each of our synthetic test programs). In
contrast, JTR recovers 98%. However, we will compare JTR solely with our ground
truth, so as to measure against the best of what IDA could do (when IDA has the debug
symbols). We believe that comparing IDA’s results on stripped binaries, even though
the results look better, is less meaningful. We run our analysis on an Intel(R) i7-3770
CPU based machine with 20GB of RAM on which JTR took 7 seconds on average per
input binary and 755 seconds in total.

The results in Table 2 show that regardless of the compiler in use, JTR yields good
results. JTR outperforms IDA when the Clang compiler is used. This is mainly because
IDA uses a pattern that is usually generated by gcc. Specifically, the code commonly
generated by clang for a jumptable is ldr pc, [rX, rY], which is different from
Listing 1.1. Moreover, rX and rY can be any general purpose register and the index
value can reside in either. Coming up with a pattern that matches Clang’s behavior
and has a low false positive rates is difficult, demonstrating the benefits of JTR’s generic
technique.

Results on SPEC CPU test suite We again compiled SPEC with both clang and
gcc. The missing cases from the SPEC benchmark are either due to compilation er-

8

Coreutils SPEC Firmware Malware Synthetic
Compiler gcc clang gcc clang unknown unknown various

Input binaries 109 109 12 16 4 17 210
Ground Truth – – – 828 – – 80
IDA + symbols 642 0 655 11 66 205 80
JTR 629 (97.98%) 295 573 (87.48%) 763 (92.14%) 65 (98%) 166 (81%) 80 (100%)
Table 2: JTR results for different test sets. The ratios in the last rows relate to the ground truth
when available, and to the “IDA + symbols” row otherwise.

rors (perlbench, omnetpp and dealII with clang), or to translation errors. We
instrument the clang compiler to generate the ground truth. However, due to code
inlining after the instrumentation, this ground truth is an underapproximation of the
number of switch statements actually generated. For the testcases compiled with gcc,
we rely on IDA’s output for the ground truth (given the debug symbols).

We observe the same behavior as in the case of coreutils: JTR succeeds both on
clang and on gcc and pattern matching yields poor results on SPEC with clang.

To show the impact of our analysis on the quality of the CFG, for the clang test
set, we incorporate the recovered switch statements in IDA. Due to the 9097 new edges
in the CFG discovered by JTR, we add a cumulated 2523 basic blocks to the CFGs. The
detailed results are given in Appendix 1.

Firmware Next, we evaluate JTR on the firmware of four different devices: a smart
meter, a boot-ROM used by LPC214, a GPS stick and a GSM modem. The firmwares
were manually reverse engineered in IDA, no symbols were available for this test. The
ground truth is represented by the manual reverse engineering process. Our translator
covered 66 switch statements that were implemented with jump tables, of which JTR
identified all but one in the unoptimised LLVM bitcode. The missing jump table is re-
covered when aggressive inlining is enabled. We found 4 jump2STUB switch statement
implementations in this set.

Malware In this experiment, we used 17 malware binaries from 7 different families:
AESddos, GoARM, PnScan, Taidra, Tsunami, Elknot and LightTaidra. We manually
unpacked each of the samples and then fed them to JTR. In practice, none of the mal-
ware samples seemed to use control flow obfuscation.

Out of the 205 switch statements identified by IDA in the translated functions, the
translator JTR recovered 166 (81%). The main cause for this modest result is the trans-
lator: several indirect jumps are wrongly translated or completely missed, therefore the
input LLVM code for JTR is inaccurate. Interestingly, while investigating the results
on this set, we also found the bug listed in Listing 1.5. The bug was confirmed by the
developers of the uClibc library.

Synthetic binaries In our next experiment, we again demonstrate that our solution
is compiler agnostic by running JTR on 210 binaries generated from 10 C source code

"bugfix: ARM: memset.S: use unsigned comparisons"–http://goo.gl/5NiXJq

9

http://goo.gl/5NiXJq

1 memset:
2 mov r3, r0
3 cmp r2, #8
4 blt 2f: // branch if < signed
5 ...
6 2:
7 movs r2, r2
8 moveq pc, lr
9 rsb r2, r2, #7

10 add pc, pc, r2,lsl#2
11 // IDA dissasembler stops here
12 nop
13 strb r1, [r3],#1 // repeated 8 times
14 ...

Listing 1.5: A real-world bug found by JTR. This code is handcoded assembly and part of the
memset function in uClibc. It treats the length parameter (r2) as a signed value. If r2 is
interpreted as a negative number, the value written to the PC is outside of the mapped memory.

files that contain switch statements or control flow based on jump table. We generate the
binaries using 20 different compilers and compiler optimization levels from 6 different
toolchains and IDEs.

In addition, we evaluated 10 cases of hand-coded assembly, which are not reported
in Table 2 all of which were successfully recovered. JTR successfully recovers all of
the 70 switch statements generated by the various compilers and reproduced by the
translator .

4.1 Detailed analysis results

Jump table types distribution We show the distribution of the different types of jump
table, as identified by IDA, in Table 3. The jumpSIMPLE type is the one that is by far
the most popular on ARM, regardless of the test set. jump2STUB is rare on normal
binaries but much less so in the firmware test set. In the synthetic set, we generated the
jump2STUB cases by selecting Thumb mode and Cortex-M0 as the target platform.
This CPU is often used in embedded devices, therefore compiler flags play an important
role in evaluation of tools alike JTR. Table 3 shows that the performance of JTR is
similar, regardless of the jump table type.

Completeness and bug finding On the ARM processor architecture, the code transitions
between ARM mode and Thumb mode by means of a jump to an odd address with
a specific instruction. Depending on the path, the address computed at runtime can
be odd or even. When JTR computes the possible address value, the reported value
can therefore also be either odd or even, depending on the path. The two results are
essentially the same (modulo the mode) and we ignore the last bit. The computation is
not ARM specific, but rather arises from the generality of the solution, as JTR explores
both paths (ARM and Thumb).

As shown in Listing 1.5, JTR helps to find memory access violations. However, this
is not its main objective and care must be taken when applying it naively. Specifically,
because our method is (a) conservative – any pointer that fails to load on a specific path

10

Test set Total jumpSIMPLE jump2JUMP jump2STUB
Coreutils-gcc IDA 642 642 0 0
Coreutils-gcc JTR 629 629 0 0
Coreutils-clang IDA 0 0 0 0
Coreuitls-clang JTR 295 N/A N/A N/A
SPEC-gcc IDA 655 655 0 0
SPEC-gcc JTR 573 573 0 0
SPEC-clang IDA 11 11 0 0
SPEC-clang JTR 763 > 11 N/A N/A
Firmware IDA (translated) 66 58 4 4
Firmware JTR 65 58 3 4
Malware IDA 205 152 53 0
Malware JTR 166 120 46 0
Synthetic binaries IDA 80 59 21 20
Synthetic binaries JTR 77 56 21 20

Table 3: Results of JTR on different jump table types. IDA is used to categorize the jump tables
whenever possible.

invalidates that path, and (b) intra-procedural, the false positive rate for a bug finding
strategy that uses JTR naively will be high. However, one may augment JTR with model
checking techniques (e.g., specify a range of values that one register can have) to reduce
the false positive rate or target only a specific family of bugs, such as stack-based buffer
overflows.

4.2 Comparing JTR with other solutions

We tried to compare JTR with a variety of other solutions.

Angr The Angr framework [48] supports ARM architecture and uses static analysis to
solve some jump table. Its public version (48998c5) does not work with switch state-
ments implemented with jump tables [2]. Again, Angr generates an incomplete CFG,
as the jump table targets are missing.

Jakstab While JakStab [32] does not support ARM, we tried to compare JTR with
JakStab’s public version by adapting our examples to the x86 architecture. Instead of
using a switch statement, we used a table of pointer to functions. With optimizations
turned off, Jakstab recovers the targeted functions. When we turn on optimizations (-O2
or -O3), its analysis fails to recover the targets.

RetDec The Retargetable decompiler [24, 35, 5] which does not use any VSA tech-
niques, fails to retrieve targets in the absence of debug symbols. The decompiler either
interprets the jump table as code or it does not reference it at all.

Radare2 Radare2’s [4] support for switch statement implemented with jump tables
is work in progress [3]. Note, however, that the implementation is based on pattern
matching and therefore will have similar issues as IDA Pro.

11

REV.NG Concurrent work from Di Federico et al. [23] use VSA to analyze LLVM
code to recover a complete CFG. Even so, on ARM architectures, IDA’s Jackard index
on CFG matching consistently outperforms REV.NG’s. The results on SPEC show that
JTR improves the quality of the CFG generated by IDA. In our experience, REV.NG
performed well on simple files, but none of the configurations of SPEC binaries could
currently be handled by REV.NG.

5 Related work

Jump tables and switch statements Cifuentes and Van Emmerik [20] propose a solu-
tion based on lifting the binary code to Register Transfer List (RTL) expressions. Code
slicing is used to extract the expression. Next the expression are substituted until any of
three known patterns are reached. The summarised patterns give enough information for
recovering the possible targets of the jump table. However, the recovery of jump table’s
targets fails when the expression does not match one of the known patterns. Holsti [31]
shows how to recover switch-case tables’ targets when a Read-Only Memory (ROM)
table is present. They use partial evaluation (e.g. run the program snippet with concrete
input) to generate possible outputs. For this the state of the registers is modeled and
loops are unrolled. This solution does not take into account the content of the memory
and is dependant on detecting switch statement implementation patterns.

Meng and Miller [39] observe the difficulty of recovering an accurate CFG because
of jump tables. They define three models for jump tables usage and populate these
models by means of static analysis. We believe that these models are a form of pattern
matching and that are not effective on ARM architecture, for example the jump2STUB
case would require information about the where in the code the stub is. Gedich and
Lazdin [29] uses the linearity property of jump tables’ contents to detect them. Their
solution assumes that the position of the jump table is roughly known. Once few targets
are discovered, JTR can make use of this heuristic to accelerate the full jump table
discovery.

Wang et al. [53] propose a solution to find data to code references. Their solution is
working only when pointers to functions are stored in the jump table, in a data section.
The compiler stores offsets rather than function pointer in the jump tables used by
switch statements.

CFG recovery Reinbacher and Brauer [43] introduce a method based on SMT for
generic control flow graph recovery. They leverage forward and backward abstract pro-
gram interpretation to recover indirect jump targets. As opposed to JTR, they do not take
advantage of the program’s memory contents but rather use pre- and post-conditions
for program’s registers which are further refined by the algorithm process. JakStab [32]
uses code inlining, abstract interpretation and local constant propagation to solve jump
targets. It does not work on ARM. JakStab uses Bounded Address Tracking [43] and
tracks every memory access and register assignment. Updates in the abstract domain
are explicitly propagated. JakStab makes a distinction between memory regions. JTR

We compiled SPEC with Clang and with GCC. We tried static and dynamic linking.

12

relies on expressions and it does not need this tracking. Moreover, in JTR the case when
a pointer points to an unknown region is captured by the SMT expressions rather than
being explicitly accounted for.

Brumley et. al [17] proposes a decompiler that uses BAP’s[16] VSA to recover the
CFG from the tested binary. Their focus is different that JTR. JTR focuses in recover-
ing the target of indirect control flows while Phoenix focuses on recovering high level
semantics (e.g. switch statments) once the CFG is known.

Value Set Analysis Balakrishnan and Reps [11] introduce a binary static analysis
technique called VSA. They show both limitations and strengths of VSA when applied
to binary reverse engineering. The method used by JTR extends their VSA by means of
the SMT solving technique.

Brauer et. al [15] argues that SMT solving is effective to do VSA but they do not
leverage the memory contents’. To achieve good performance they perform liveness
analysis of the Intermediate Representation (IR). This is not required by JTR as the
expression set contains at any time the optimal set. Bounded values and k-set analysis
were previously used by Bardin et al. [14] to recover indirect jumps. They exploit the
locality of the indirect target computation.

6 Limitations

Path explosion A large number of paths may exist from the targeted pointer to the
start of the function. Building a dependency graph for each of them and subsequently
solving it could lead to resource exhaustion. The deeper into the function’s CFG the
program uses the pointer, the higher the chances of running into this problem. We find
that in practice, limiting the size of each path to 5 LLVM basic blocks yields good
results. To further optimize the running time, JTR solves the paths in ascending order:
from the shortest to the longest.

Code discovery The accuracy of the translator, although not a real contribution of
this paper, directly influences the results of JTR. For instance, because the translator
currently uses a static view of the program, it misses jump tables that the program
populates at runtime. This is not a fundamental limitation and in future work, we will
fix it by feeding back the JTR results. Note that dynamic jump tables are not common
in benign software, but it is not hard to imagine that future malware will make use of it,
as an additional defense.

Memory layout and program correctness JTR assumes that the input code is correct
and that a memory map is available. While we can extract the memory map automat-
ically using heuristics (e.g., read/write ordering [56]), guaranteeing the correctness of
the program is hard. Conversely, JTR can be instructed to find bugs. For instance, in
Listing 1.5 we show one example in which JTR finds a previousely unreported bug (see
also Section 4). We are confident that we can extend JTR to find good candidates for
memory violation errors.

During the analysis, we should take special care when loading pointers that point
to Input/Output (IO) memory. We cannot predict the value returned by load from an IO

13

memory. The naive solution is to ignore the memory accesses to IO memory and treat
them as invalid accesses. However, doing so may have a negative impact on the true
positive rate of JTR in case an IO value is used to index a jump table.

Memory aliasing Finally, the memory accesses generated by the LLVM translator
can alias. When this happens the accuracy of the expressions stored in the nodes of the
graph and of the path constraints decreases. The underlying reason is that JTR does not
capture the aliasing information in SMT expressions. As future work, we will leverage
the alias analysis already provided by LLVM to detect these cases.

LLVM Translator Like SecondWrite [7] and PIE [21], JTR builds on top of a binary-
to-LLVM translator. The translator lifts the code to LLVM in a straightforward manner
and JTR then analyzes the resulting code together with the memory image of the binary.
Specifically, it uses weak heuristics for determining whether a function is in ARM mode
or Thumb mode and occasionally misclassifies them. In addition, the translator does not
itself resolve the indirect jump targets and its recursive descent disassembly therefore
misses code fragments. The solution for the latter problem would be to feed the results
of the JTR analysis back to the translator to discover the targeted code, but doing so is
a major engineering task, and we leave this for future work.

Misclassifying a fragment’s mode (ARM or Thumb) and missing code fragments in
the recursive descent both cause JTR to miss indirect jumps and hence the appropriate
targets. We stress that these issues are a problem of the translator only and not of the JTR
analysis. By construction, JTR will generate a solution for the targets of every indirect
jump in its input.

7 Conclusion

Jump tables on RISC architectures lead to frequent interleavings of (jump table) data
and code in binaries. Most disassembler use pattern matching to detect such jump ta-
bles in binary code, which easily fails for complicated indirect control transfers. We
argue that in specific security-relevant domains (handwritten code, firmware and mal-
ware), we need a more generic technique to handle the cases that elude common pattern
matching. This paper proposed such a technique for “solving” jump targets for indi-
rect control transfers. By transforming the targets to formulas that we solve in an SMT
solver, we remove dependencies on templates, compilers, and processor architectures.
The results show that our technique approaches and sometimes improves that of popu-
lar disassemblers that use pattern matching. JTR is available as an open source project:
https://github.com/cojocar/jtr.

8 Acknowledgments

We thank the anonymous reviewers for their feedback. This work was supported by the
Netherlands Organisation for Scientific Research through the grant NWO 628.001.006
CYBSEC “OpenSesame” and through the grant NWO 639.023.309 VICI “Dowsing”.

14

https://github.com/cojocar/jtr

References

1. IDA F.L.I.R.T. Technology: Overview.
2. Angr, Switch Statement Analysis 106. https://github.com/angr/angr/issues/106, June 2016.
3. Radare2, Analyze jump tables 3201. https://github.com/radare/radare2/issues/3201, June

2016.
4. Radare2, Portable reversing framework. https://radare.org, June 2016.
5. Retargetable Decompiler. https://retdec.com/decompilation-run/, June 2016.
6. ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J. Control-flow integrity. In

CCS12 (2005).
7. ANAND, K., SMITHSON, M., ELWAZEER, K., KOTHA, A., GRUEN, J., GILES, N., AND

BARUA, R. A compiler-level intermediate representation based binary analysis and rewriting
system. In ECCS8 (2013), pp. 295–308.

8. ANAND, K., SMITHSON, M., KOTHA, A., ELWAZEER, K., AND BARUA, R. Decompila-
tion to compiler high IR in a binary rewriter. Tech. rep., University of Maryland, 2010.

9. ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL, A., KLEIN, J., LE TRAON,
Y., OCTEAU, D., AND MCDANIEL, P. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In ACM SIGPLAN (2014).

10. BALAKRISHNAN, G., AND REPS, T. Analyzing memory accesses in x86 executables. In
Compiler Construction (2004), Springer, pp. 5–23.

11. BALAKRISHNAN, G., AND REPS, T. WYSINWYX: What You See is Not What You eXe-
cute. ACM Trans. Program. Lang. Syst. 32, 6 (Aug. 2010), 23:1–23:84.

12. BANSAL, S., AND AIKEN, A. Binary Translation Using Peephole Superoptimizers.
OSDI’08.

13. BAO, T., BURKET, J., WOO, M., TURNER, R., AND BRUMLEY, D. Byteweight: Learning
to recognize functions in binary code. In USENIX Security 14.

14. BARDIN, S., HERRMANN, P., AND VÉDRINE, F. Refinement-based CFG reconstruction
from unstructured programs. VMCAI’11, Springer.

15. BRAUER, J., HANSEN, R. R., KOWALEWSKI, S., LARSEN, K. G., AND OLESEN, M. C.
Adaptable Value-Set Analysis for Low-Level Code. In SSV’12.

16. BRUMLEY, D., JAGER, I., AVGERINOS, T., AND SCHWARTZ, E. J. BAP: A Binary Analy-
sis Platform. CAV’11.

17. BRUMLEY, D., LEE, J., SCHWARTZ, E. J., AND WOO, M. Native x86 decompilation us-
ing semantics-preserving structural analysis and iterative control-flow structuring. USENIX
SEC’13.

18. CASTRO, M., COSTA, M., MARTIN, J.-P., PEINADO, M., AKRITIDIS, P., DONNELLY, A.,
BARHAM, P., AND BLACK, R. Fast byte-granularity software fault isolation. SIGOPS’09.

19. CHA, S. K., WOO, M., AND BRUMLEY, D. Program-Adaptive Mutational Fuzzing.
S&P’15.

20. CIFUENTES, C., AND VAN EMMERIK, M. Recovery of jump table case statements from
binary code. In Program Comprehension (1999).

21. COJOCAR, L., ZADDACH, J., VERDULT, R., BOS, H., FRANCILLON, A., AND

BALZAROTTI, D. PIE: Parser Identification in Embedded Systems. ACSAC 2015.
22. DAVI, L., LEHMANN, D., SADEGHI, A.-R., AND MONROSE, F. Stitching the Gadgets: On

the Ineffectiveness of Coarse-Grained Control-Flow Integrity Protection. USENIX SEC’14.
23. DI FEDERICO, A., PAYER, M., AND AGOSTA, G. Rev.Ng: A Unified Binary Analysis

Framework to Recover CFGs and Function Boundaries. In Proceedings of the 26th Interna-
tional Conference on Compiler Construction, CC 2017, ACM, pp. 131–141.

15

https://github.com/angr/angr/issues/106
https://github.com/radare/radare2/issues/3201
https://radare.org
https://retdec.com/decompilation-run/

24. DURFINA, L., KŘOUSTEK, J., ZEMEK, P., KOLÁ\VR, D., HRUSKA, T., MASARÍK, K.,
AND MEDUNA, A. Design of a Retargetable Decompiler for a Static Platform-Independent
Malware Analysis. International Journal of Security and Its Applications 5, 4 (2011), 91–
106.

25. ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M., AND NECULA, G. C. XFI:
Software guards for system address spaces. OSDI’06.

26. EVANS, I., LONG, F., OTGONBAATAR, U., SHROBE, H., RINARD, M., OKHRAVI, H.,
AND SIDIROGLOU-DOUSKOS, S. Control jujutsu: On the weaknesses of fine-grained con-
trol flow integrity. CCS’15.

27. FORD, B., AND COX, R. Vx32: Lightweight User-level Sandboxing on the x86. In USENIX
Annual Technical Conference.

28. GANESH, V., LEEK, T., AND RINARD, M. Taint-based Directed Whitebox Fuzzing. ICSE
’09.

29. GEDICH, A., AND LAZDIN, A. Improved Algorithm for Identification of Switch Tables in
Executable Code. FRUCT’15.

30. HARRIS, L. C., AND MILLER, B. P. Practical analysis of stripped binary code. ACM
SIGARCH Computer Architecture News 33, 5 (2005), 63–68.

31. HOLSTI, N. Analysing Switch-Case Tables by Partial Evaluation. In WCET (2007).
32. KINDER, J., AND VEITH, H. Jakstab: A Static Analysis Platform for Binaries. CAV ’08.
33. KINDER, J., AND VEITH, H. Precise Static Analysis of Untrusted Driver Binaries. FMCAD

’10.
34. KÄSTNER, D., AND WILHELM, S. Generic Control Flow Reconstruction from Assembly

Code.
35. KŘOUSTEK, J. Retargetable Analysis of Machine Code. PhD thesis, Faculty of Information

Technology, Brno University of Technology, CZ, 2015.
36. LI, Y., MCCUNE, J., NEWSOME, J., PERRIG, A., BAKER, B., AND DREWRY, W. Minibox:

A two-way sandbox for x86 native code. USENIX ATC 14.
37. MCCABE, T. J. A complexity measure. Software Engineering, IEEE (1976).
38. MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a CISC Architecture. USENIX-

SS’06.
39. MENG, X., AND MILLER, B. Binary code is not easy. ISSTA’16.
40. MICROSOFT. The Z3 Theorem Prover. https://github.com/Z3Prover/z3, February 2016.
41. MING, J., WU, D., XIAO, G., WANG, J., AND LIU, P. TaintPipe: Pipelined Symbolic Taint

Analysis. In USENIX SEC’15.
42. O’SULLIVAN, P., ANAND, K., AND KOTHA, A. Retrofitting security in COTS software

with binary rewriting. IFP SEC’11.
43. REINBACHER, T., AND BRAUER, J. Precise control flow reconstruction using boolean logic.

In EMSOFT 2011.
44. SAYLE, R. A. A superoptimizer analysis of multiway branch code generation. In Proceed-

ings of the GCC Developers Summit (2008).
45. SEHR, D., MUTH, R., BIFFLE, C. L., KHIMENKO, V., PASKO, E., YEE, B., SCHIMPF, K.,

AND CHEN, B. Adapting Software Fault Isolation to Contemporary CPU Architectures. In
USENIX SEC’10.

46. SHEN, B.-Y., CHEN, J.-Y., HSU, W.-C., AND YANG, W. LLBT: An LLVM-based Static
Binary Translator. In Proceedings of the 2012 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems (New York, NY, USA, 2012), CASES ’12,
ACM, pp. 51–60.

47. SHIN, Y., AND WILLIAMS, L. An Empirical Model to Predict Security Vulnerabilities
Using Code Complexity Metrics. ESEM ’08.

16

https://github.com/Z3Prover/z3

48. SHOSHITAISHVILI, Y., WANG, R., SALLS, C., STEPHENS, N., POLINO, M., DUTCHER,
A., GROSEN, J., FENG, S., HAUSER, C., KRUEGEL, C., AND VIGNA, G. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In S&P’16.

49. SMITHSON, M., ANAND, K., AND KOTHA, A. Binary rewriting without relocation infor-
mation. Tech. Rep. November, University of Maryland, 2010.

50. TICE, C., ROEDER, T., COLLINGBOURNE, P., CHECKOWAY, S., ERLINGSSON, U.,
LOZANO, L., AND PIKE, G. Enforcing Forward-Edge Control-Flow Integrity in GCC &
LLVM. In USENIX SEC’14.

51. TIKIR, M. M., LAURENZANO, M., CARRINGTON, L., AND SNAVELY, A. PMaC Binary
Instrumentation Library for PowerPC/AIX. In Workshop on Bin. Inst. and App. (2006).

52. VAN DER VEEN, V., ANDRIESSE, D., GÖKTAŞ, E., GRAS, B., SAMBUC, L., SLOWINSKA,
A., BOS, H., AND GIUFFRIDA, C. Practical context-sensitive cfi. CCS’15.

53. WANG, S., WANG, P., AND WU, D. Reassembleable Disassembling. In USENIX SEC’15.
54. WANG, X., JHI, Y.-C., ZHU, S., AND LIU, P. Still: Exploit code detection via static taint

and initialization analyses. In ACSAC’08.
55. YEE, B., SEHR, D., DARDYK, G., CHEN, J., MUTH, R., ORMANDY, T., OKASAKA, S.,

NARULA, N., AND FULLAGAR, N. Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In S&P’09.

56. ZADDACH, J., BRUNO, L., FRANCILLON, A., AND BALZAROTTI, D. AVATAR: A Frame-
work to Support Dynamic Security Analysis of Embedded Systems’ Firmwares. NDSS’14.

57. ZENG, B., TAN, G., AND MORRISETT, G. Combining control-flow integrity and static
analysis for efficient and validated data sandboxing. In CCS’18 (2011), ACM, pp. 29–40.

58. ZHANG, M., AND SEKAR, R. Control Flow Integrity for COTS Binaries. In USENIX
SEC’13.

1 SPEC result details

Testcase Clang IDA JTR Edges added BBs added IDA JTR
h264ref 26 0 25 (96.15%) 142 (0.794%) 10 (0.079%) 17 17 (100.00%)

soplex 27 0 40 (148.15%) 241 (1.641%) 20 (0.183%) 36 40 (111.11%)
cactusADM 36 0 34 (94.44%) 1399 (6.819%) 766 (5.116%) 34 29 (85.29%)

gromacs 40 0 40 (100.00%) 367 (1.685%) 30 (0.192%) 43 41 (95.35%)
Table 4: IDA results on SPEC binaries compiled with clang are depicted in the first 5 columns.
The first column represents the number of switch statement as reported by clang. We instru-
mented clang to tell if a switch statement was lowered to a jump table before code inlining
takes place, thus the above 100% success rate on some cases for JTR. IDA misses most of the
jump tables on clang. Column 3 and 4 show how the CFG benefits from the newly discovered
targets. The percentages are relative to the total number of edges and basic blocks. The results
for SPEC when compiled with gcc are shown in the last two columns. Here JTR performs better
than IDA on soplex.

17

	JTR: A binary solution for switch-case recovery

